

Name	
	Date

Notations: In addition to f'(x), various notations are used to denote the derivative of y = f(x). The ones most commonly used are y' and $\frac{dy}{dx}$. $\frac{dy}{dx}$ should be thought of as the derivative of y with respect to the variable x.

Problems:

1.
$$f(x) = 4x^3 - 8x^2 + 2x$$

$$f(x) = 4x^3 - 8x^2 + 2x \qquad \text{find } f'(x). \int f'(x) = |\lambda x|^2 - |6 \times f|$$

2.
$$g(x) = -2x^2 - 3x + 1$$

$$g(x) = -2x^2 - 3x + 1$$
 find $g'(x) = -4x - 3$

3.
$$f(x) = 3x^2 - 8x + 5x^{-1}$$

$$f(x) = 3x^2 - 8x + 5x^{-1}$$
 find $f'(x)$. $f'(x) = 6x - 8 - 5x^{-2}$

$$4. y = 6x^4 - 3x^3 + 8$$

find y'.
$$y'=24x^3-9x^2$$

$$5. y = 2x + 1$$

find
$$\frac{dy}{dx}$$
. $\frac{dy}{dx} = 2$

$$6. y = x^2$$

find
$$\frac{dy}{dx} \cdot \left[\frac{\partial y}{\partial x} - \frac{\partial x}{\partial x} \right]$$

7.
$$s = -16t^2 + 96t$$

find
$$\frac{ds}{dt}$$
. $\frac{ds}{dt} = -32t + 96$

8.
$$v = -32t + 96$$

find
$$\frac{dv}{dt}$$
. $\frac{dv}{dt} = -32$

9.
$$y = 4 - 8z + 2z^3$$

find
$$\frac{dy}{dz} \cdot \frac{dy}{dz} = -8 + 6z^2$$

$$10. y = \sqrt{x^5} = \cancel{X} = \cancel{5}$$

find
$$\frac{dy}{dz} \cdot \frac{dy}{dz} = -8 + 6z^2$$
 No 2 needed here find y'. $y' = \frac{5}{2} \times \frac{3}{2} = \frac{5}{2} \sqrt{X^3}$

11.
$$y = 6x^5 - \frac{3}{x^3} + \frac{8}{x^5}$$
 find $\frac{dy}{dx}$. $\sqrt[3]{x} = 30 \times 4 + 9 \times 4 - 40 \times 10^{-1}$

(Write your final answer in radical form.)
$$y = 6x^{5} - \frac{3}{x^{3}} + \frac{8}{x^{5}} \qquad \text{find } \frac{dy}{dx}.$$

$$6x^{5} - 3x^{-3} + 8x^{-5}$$

$$12. \qquad y = .01x^{4} + .01x^{3} - .46x^{2} - .04x + 1.68 \qquad \text{find } y'.$$

$$y = x^{5/3} - x^{3/5}$$

$$y = x^{5/3} - x^{3/5}$$

13.
$$y = \sqrt[3]{x^5} - \sqrt[5]{x^3}$$

find
$$\frac{dy}{dx}$$
. $\frac{dy}{dx} = \frac{5}{3} \times \frac{2}{3} - \frac{3}{5} \times \frac{2}{3} = \frac{3}{3} \times \frac{3}{3} \times \frac{3}{3} = \frac{3}$

14.

$$g(x) = 16 - 4x^{-2} + \frac{3}{4}x^{-4} - 5x^{-5} \quad \text{find } g'(x).$$

$$g'(x) = 8x^{-3} - 3x + 25x^{-6}$$

16. A particle moves along the x-axis in such a way that its position at time t is given by $s(t) = \frac{1}{3}t^3 - 3t^2 + 8t, t > 0$

A particle moves along the x-axis in such a way that its position at time t is given by

 $s(t) = 3t^4 - 16t^3 + 24t^2$ for $-5 \le t < 5$.

a. Show that at time t = 0 the particle is moving to the right.

- a. Determine the velocity and acceleration of the particle at time t. [find v(t) and a(t)]
- b. For what values of t is the particle at rest?
- c. For what values of t does the particle change direction?
- d. What is the velocity when the acceleration is first zero?

b)
$$V(t) = 0$$

 $0 = (t - 4)(t - 2)$
 $t = 4, t = 2 \times c$
 $\sum_{k=0}^{\infty} (t - 4)(t - 2)$

15.

C)
$$t-4$$
 $t-2$
 $t-4$
 $t-4$
 $t-2$
 $t-4$
 $t-4$